Key Learning: Geometric relationships are used to find unknown measurements and solve real-world problems.

Unit Essential Question: How can we use geometric relationships to find unknown measurements and solve real-world problems?

Concept:
Congruency
Section A :
Begin to develop the
concept of similarity
informally through first
understanding congruent
figures and how congruent
figure might tessellate a
larger similar figure.

Concept:
Similarity
Sections B, C, D:
By now students should understand how to
use tessellations as a way to prove figures
are similar, but is inefficient. There is a
need for a more efficient way to understand,
describe, and prove similarity, including
finding missing side lengths. A
multiplication factor is introduced to provide
a more efficient method for this. Students
begin to develop and use properties of
similarity to justify similar figures and use
this reasoning to solve real world problems.

Concept:
 Pythagorean Theorem

Going the Distance

(inserted)

Students investigate and revisit the Pythagorean
Theorem as another geometric relationship in their "toolbox". This will help them to better justify and prove other geometric relationships in the future.

Concept: Geometric Relationships

 Section E:Students continue to refine their methods of proof more formally using the coordinate plane. They start by reconnecting to similar triangles by proving similarity on a coordinate plane. Understanding slope, parallel lines, and perpendicular lines are additional "tools" that can help to prove similarity. They then use this knowledge to prove other figures and relationships on the coordinate plane.

Lesson Essential

Questions:

How can you determine if two figures are congruent?

How can you determine if a figure tessellates a larger figure?

Lesson Essential Questions:
How can you describe the relationship
between figures that are an enlargement or a reduction of each other?

- AP: Describe the effect a multiplication factor has on a figure. (What effect does a multiplication factor have on a figure?)

How can you justify that two figures are similar?

How can we use similarity to reason about and solve real world problems?

Lesson Essential Questions:

 How can we prove the Pythagorean theorem and justify why it holds true?- AP: Identify the figures for which the Pythagorean Theorem holds true. (How can we use the Pythagorean Theorem to distinguish between right and non-right triangles?)

Lesson Essential Questions:

How can we use the coordinate plane to reason about and prove geometric relationships?

- AP: Use similar triangles to understand slope
- AP: Use slope to prove parallel \& perpendicular lines
- AP: Use Pythagorean Theorem to find the distance between two points.
- AP: Use all of the above to prove and justify relationships among other shapes.

What does it mean to create a convincing argument?
What does it mean to 'justify'?

Vocabulary:	Vocabulary:	Vocabulary: Congruent, Tessellation, Parallel	Vocabulary: Enlargement factor, reduction factor, multiplication factor, corresponding sides, corresponding angles

